





### QUALITY TESTED | SAFE WATER | COMMITMENT TO QUALITY



## 2018 WATER QUALITY REPORT

We are proud to report that the Bessemer Water Service met or exceeded all federal and state standards for drinking water during the reporting period.

www.BessemerUtilities.com



#### **REGULATED CONTAMINANTS**

| KEGULATED CONTAMINANTS                         |                            |           |              |                                                                                                                                                                                                                                                                 |  |  |  |
|------------------------------------------------|----------------------------|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Contaminants (units)                           | HIGHEST AMOUNT<br>DETECTED | MCLG      | MCL          | Heise O                                                                                                                                                                                                                                                         |  |  |  |
| Total Coliform Bacteria                        | 10*                        | 0         | < 5%         | Major Source<br>Human and animal fecal waste; *Training and new lab personnel learning how to take samples. All samples were retaken and validated as acceptable.                                                                                               |  |  |  |
| Viruses, Giardia                               | ND                         | ND        | ND           | Human and animal recal waste, in animg and new tab personnel rearing new to take samples. An samples were relation and validated as acceptance.<br>Human and animal fecal waste                                                                                 |  |  |  |
| Legionella                                     | ND                         | ND        | ND           | Found naturall in water, multiples in heating systems                                                                                                                                                                                                           |  |  |  |
| Beta/photon emitters (mrem/yr)                 | 0.00                       | 0         | 4            | Decay of natural and manmade deposits                                                                                                                                                                                                                           |  |  |  |
| Alpha emitters (pCi/yr)                        | 0.00                       | 0         | 15<br>5      | Erosion of natural deposits<br>Erosion of natural deposits                                                                                                                                                                                                      |  |  |  |
| Combined radium (pCi/l)<br>Uranium             | 0.00<br>ND                 | ND        | ND           | Erosion of natural deposits<br>Erosion of natural deposits                                                                                                                                                                                                      |  |  |  |
| Antimony                                       | ND ppb                     | 6         | 6            | Discharge from petroleum refineries; fire retardants; ceramiccs; electronics; solder                                                                                                                                                                            |  |  |  |
| Arsenic                                        | ND ppb                     | 0         | 50           | Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes                                                                                                                                                          |  |  |  |
| Asbestos (MFL)                                 | NA MFL                     | 7         | 7            | Decay of asbestos cement water mains; Erosion of natural deposits                                                                                                                                                                                               |  |  |  |
| Barium                                         | ND ppm<br>ND ppb           | 2         | 2            | Discharge from drilling wastes; Discharge from metal refineries; Erosion of natural deposits                                                                                                                                                                    |  |  |  |
| Berylium<br>Cadmium                            | ND ppb                     | 5         | 5            | Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries<br>Corrosion of galvanized pipes; Erosion of natural deposits; Discharge from metal refineries, runoff from waste batteries and paints |  |  |  |
| Chromium                                       | ND ppb                     | 100       | 100          | Discharge from steel and pulp mills; Erosion of natural deposits                                                                                                                                                                                                |  |  |  |
| Copper                                         | 0.027                      | 1.3       | AL=1.3       | Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives                                                                                                                                                          |  |  |  |
| Cyanide                                        | ND ppb                     | 200       | 200          | Discharge from steel/metal factories; Discharge from plastic and fertilizer factories                                                                                                                                                                           |  |  |  |
| Fluoride                                       | 1.04                       | 4         | 4<br>AL=0.15 | Water additive which promotes strong teeth; Erosion of natural deposits; Doscharege from ferilizer and aluminum factories                                                                                                                                       |  |  |  |
| Lead<br>Mercury                                | >0.005<br>ND ppb           | 2         | 2 2          | Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives<br>Erosion of natural deposits; Dischage from refineries and factories; Runoff from landfills; Runoff from cropland                                      |  |  |  |
| Nitrate                                        | 0.59                       | 10        | 10           | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits                                                                                                                                                                     |  |  |  |
| Nitrite                                        | 0                          | 1         | 1            | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits                                                                                                                                                                     |  |  |  |
| Selenium                                       | ND ppb                     | 50        | 50           | Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines                                                                                                                                                                |  |  |  |
| Thallium                                       | ND ppb                     | 0.5       | 2<br>0.11    | Leaching from ore-processing sites; Discharge from electronics, glass, and drug factories<br>Soil Runoff                                                                                                                                                        |  |  |  |
| Turbidity<br>2,4,-D                            | 0.29<br>ND ppb             | 70        | 70           | Soil Runoff<br>Runoff from herbicede used on row crops                                                                                                                                                                                                          |  |  |  |
| 2,4,5-TP(Silver)                               | ND ppb                     | 50        | 50           | Residue of banned herbicide                                                                                                                                                                                                                                     |  |  |  |
| Arylamide                                      | NA ppm                     | 0         | TT           | Added to wate during sewage/wastewater treatment                                                                                                                                                                                                                |  |  |  |
| Alchlor                                        | ND ppb                     | 0         | 2            | Runoff from herbicede used on row crops                                                                                                                                                                                                                         |  |  |  |
| Atrazine                                       | ND ppb                     | 3         | 3<br>200     | Runoff from herbicede used on row crops                                                                                                                                                                                                                         |  |  |  |
| Beno(a)pyrene (PAHs)<br>Carbofuran             | ND ppt<br>ND ppb           | 40        | 200<br>40    | Leaching from linings of water storage tanks and distribution lines<br>Leaching from soil fumigant used on rice and alfalfa                                                                                                                                     |  |  |  |
| Chlorodane                                     | ND ppb                     | 0         | 2            | Residue of banned termiticide                                                                                                                                                                                                                                   |  |  |  |
| Dalapon                                        | ND ppb                     | 200       | 200          | Runoff from herbicide used on rights of way                                                                                                                                                                                                                     |  |  |  |
| Di (2-ethylhexyl)adipate                       | ND ppb                     | 400       | 400          | Discharge from chemical factories                                                                                                                                                                                                                               |  |  |  |
| Di (2-ethlyhexyl)phtalate                      | ND ppb                     | 0         | 6            | Discharge from rubber and chemical factories                                                                                                                                                                                                                    |  |  |  |
| Dinoseb<br>Diquat                              | ND ppb<br>ND ppb           | 20        | 20           | Runoff from herbicide used on soybeans and vegtables<br>Runoff from herbicide use                                                                                                                                                                               |  |  |  |
| Diosin (2,3,4,8-TCDD)                          | ND ppg                     | 0         | 30           | Emissions from water incineration and other combustion; Discharge from chemical factories                                                                                                                                                                       |  |  |  |
| Endothall                                      | ND ppb                     | 100       | 100          | Runoff from herbicide use                                                                                                                                                                                                                                       |  |  |  |
| Endrin                                         | ND ppt                     | 2         | 2            | Residue from banned insecticide                                                                                                                                                                                                                                 |  |  |  |
| Epichlorohydrin                                | ND ppb                     | 0<br>700  | TT<br>700    | Discharge from industial chemical factories; Added to water during treatement process; An impurity of some water treament chemicals                                                                                                                             |  |  |  |
| Glyphosate<br>Heptachlor                       | ND ppb<br>ND ppt           | 0         | 400          | Runoff from herbicede use Residue from banned pesticide                                                                                                                                                                                                         |  |  |  |
| Heptachlor epoxide                             | ND ppt                     | Ő         | 200          | Breakdown of heptachlor                                                                                                                                                                                                                                         |  |  |  |
| Hexachlorobenzene                              | ND ppb                     | 0         | 1            | Discharge from metal refineries and agricultural chemical factories                                                                                                                                                                                             |  |  |  |
| Jexachlorocyclopentadiene                      | ND ppb                     | 50        | 50           | Discharge from chemical factories                                                                                                                                                                                                                               |  |  |  |
| Lindane                                        | ND ppt<br>ND ppb           | 200<br>40 | 200<br>40    | Runoff/leaching from insecticide used on cattle, lumber, and gardens<br>Runoff/leaching from insecticide used on fruits, vegatables, alfalfa, and livestock                                                                                                     |  |  |  |
| Methoxychlor<br>Oxamyl (Vydate)                | ND ppb                     | 200       | 200          | Runoff/leaching from insecticed used on miles, vegatables, analia, and investork<br>Runoff/leaching from insecticed used on apples, potatoes and tomatoes                                                                                                       |  |  |  |
| PCBs (polychlorinated biphenyls)               | ND ppt                     | 0         | 500          | Runoff from landfills; Discharge of waste chemicals                                                                                                                                                                                                             |  |  |  |
| Pentachlorphenol                               | ND ppb                     | 0         | 1            | Discharge from wood preserving factors                                                                                                                                                                                                                          |  |  |  |
| Picolram                                       | ND ppb                     | 500       | 500          | Herbicide runoff                                                                                                                                                                                                                                                |  |  |  |
| Simaxine                                       | ND ppb                     | 4         | 4            | Herbicide runoff<br>Descriftlese biss from insectionds used on setter and settle                                                                                                                                                                                |  |  |  |
| Toxaphene<br>Benzene                           | ND ppb<br>ND ppb           | 0         | 5            | Runoff/leaching from insecticede used on cotton and cattle Discharge from factories                                                                                                                                                                             |  |  |  |
| Carbon tetrachloride                           | ND ppb                     | 0         | 5            | Discharge from chemical plants and other industrial activities                                                                                                                                                                                                  |  |  |  |
| Chlorobenzene                                  | ND ppb                     | 100       | 100          | Discharge from chemical and agricultural chemical factories                                                                                                                                                                                                     |  |  |  |
| Dibromochloropropne                            | ND ppt                     | 0         | 200          | Runoff/leaching from soil furnigant used on soybeans, cotton, pineapples, and orchards                                                                                                                                                                          |  |  |  |
| o-Dichlorobenzene                              | ND ppb<br>ND ppb           | 600<br>75 | 600<br>75    | Discharge from Industrial and chemical factories                                                                                                                                                                                                                |  |  |  |
| p-Dichlorobenzene<br>1,2-Dichloroethane        | ND ppb                     | 0         | 5            | Discharge from Industrial and chemical factories<br>Discharge from Industrial and chemical factories                                                                                                                                                            |  |  |  |
| 1,1-Dichloroethylene                           | ND ppb                     | 7         | 7            | Discharge from Industrial and chemical factories                                                                                                                                                                                                                |  |  |  |
| cis-1,2-Dichloroethylene                       | ND ppb                     | 70        | 70           | Discharge from Industrial and chemical factories                                                                                                                                                                                                                |  |  |  |
| trans-1,2-Dichloroethylene                     | ND ppb                     | 100       | 100          | Discharge from Industrial and chemical factories                                                                                                                                                                                                                |  |  |  |
| Dichloromethane<br>1,2-Dichloropropane         | ND ppb                     | 0         | 5            | Dischage from pharmaceutical and chemical factories                                                                                                                                                                                                             |  |  |  |
| 1,2-Dichloropropane<br>Ethylbenzene            | ND ppb<br>ND ppb           | 700       | 700          | Discharge from industrial chemical factories<br>Discharge from petroleum refineries; fire retardants; ceramiccs; electronics; solder                                                                                                                            |  |  |  |
| Ethylene dibromide                             | ND ppt                     | 0         | 50           | Discharge from petroleum refineries                                                                                                                                                                                                                             |  |  |  |
| Styrene                                        | ND ppb                     | 100       | 100          | Discharge from rubber and plastic factories, Leaching from landfills                                                                                                                                                                                            |  |  |  |
| Tetrachloroethylene                            | ND ppb                     | 0         | 5            | Leaching from PVC pipes; Discharge from factories and dryc cleaners                                                                                                                                                                                             |  |  |  |
| 1,2,4-Trichlorobenzene                         | ND ppb                     | 70<br>200 | 70<br>200    | Discharge from textile finishing factories                                                                                                                                                                                                                      |  |  |  |
| 1,1,1-Tricholroethane<br>1,1,2-Tricholroethane | ND ppb<br>ND ppb           | 200       | 200          | Discharge from metal degreasing sites and other factories<br>Discharge from industrial chemical factories                                                                                                                                                       |  |  |  |
| Trichloroethylene                              | ND ppb                     | 0         | 5            | Discharge from degreasing site and other factors                                                                                                                                                                                                                |  |  |  |
| TTHM (Total trihalomethanes)                   | 98                         | 0         | 80           | By-product of drinking water chlorination                                                                                                                                                                                                                       |  |  |  |
| HAA5                                           | 64.8                       | 0         | 60           | By-product of drinking water chlorination                                                                                                                                                                                                                       |  |  |  |
| Toluene                                        | ND ppb                     | 1         | 1            | Dischage from petroleum factories                                                                                                                                                                                                                               |  |  |  |
| Vinyl Chloride<br>Xylenes                      | ND ppb<br>ND ppm           | 10        | 10           | Leaching from PVC piping, Discharge from plasics factories Discharge from petroleum factories, Discharge fron chemical factories                                                                                                                                |  |  |  |
| Bromate                                        | ND ND                      | ND        | ND           | By-product of drinking water chlorination                                                                                                                                                                                                                       |  |  |  |
| Chloramine                                     | ND                         | ND        | ND           | Water additive used to control microbes                                                                                                                                                                                                                         |  |  |  |
| Chlorine                                       | 1.77                       | < 4.0     | 4.0          | Water additive used to control microbes                                                                                                                                                                                                                         |  |  |  |
| Chlorine Dioxide                               | 0.80                       | 1         | 1            | Byproduct of drinking water disinfection                                                                                                                                                                                                                        |  |  |  |
|                                                |                            | 1 1.1     |              | s associally for program wamon and young shildron. Load in drinking water is primarily from materials an                                                                                                                                                        |  |  |  |

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Bessemer Water Service is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water hotline or at www.EPA.gov/safewater/lead.com. Based on a study conducted by ADEM with the approval of the EPA, a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus, monitoring for these contaminants was not required.

### **DRINKING WATER INFO & SOURCES**

We are proud to report that the Bessemer Water Service met or exceeded all federal and state standards for drinking water during the reporting period.

Generally, drinking water comes from sources such as rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over land or through the ground, it dissolves natural minerals and, in some cases, radioactive materials. It can also pick up substances left behind by animals or people.

The Bessemer Water Service checks for substances that may include:

- Microbial substances, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;
- Inorganic substances, such as salts and metals, which can occur naturally or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming;
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- Organic chemical substances, including synthetic (manufactured) and volatile (highly water-soluble) organic chemicals. These substances are by products of industrial processes and petroleum production and can also come from gas stations, urban storm water runoff, and septic systems:
- Radioactive substances, which can occur normally or result from oil and aas production or mining activities.

Water quality begins with our water sources. The Birmingham area is fortunate in this respect. Rivers and lakes in the Cahaba River Basin and the Warrior River Basin provide us with outstanding water for treatment. Bessemer Water Service purchases their water from Gusa Water Systems, which uses surface waters from the Warrior River.

For years, the Bessemer Water Service has been committed to supplying you, our customers, with the highest quality water possible. That means working to make sure that your water contains no substance above the allowable Federal standards. In fact, we can go further. Our customers enjoy water that tests consistently better than the minimum standards set by the U.S. Environmental Protection Agency (EPA).

You may also attend the monthly board meeting held on the 2nd Thursday of each month at 5:00 pm at city hall located at 1800 3rd Avenue on the 2nd floor. Members are Sarah Belcher, Alphonso Patrick and Maurice Muhammad.



# & ABBREVIATIONS

In the following table, you will find many terms and abbreviations that may not be familiar to you. To help you better understand these terms, we have provided the following definitions.

- Action Level (AL) the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- Maximum Contaminant Level the Maximum allowed (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLS are set as close to the MCLGS as feasible using the best available treatment technology.
- Maximum Contaminant Level Goal the aoal (MCLG) is the level of

# WATER QUALITY REPORT

a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

- Maximum Residual Disinfectant Level or MRDL the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Maximum Residual Disinfectant Level Goal or MRDLG the level or a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Nephelometric turbidity Unity (NTU) nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5NTU is just noticeable to the average person.
- Non-Detects (ND) laboratory analysis indicates that the constituent is not present.
- Not Tested (NT) no testing was required during this monitoring period.
- Parts per million (ppm) or milligrams per liter (mg/l) one part per million corresponds to one minute in two years or a single penny in \$10,000.
- Parts per billion (ppb) or micrograms per liter one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- Picocuries per liter (pCi/l) picocuries per liter is a measure or the radioactivity in water.
- Millirems per year (mrem/yr) measure or radiation absorbed by the body.
- Million fibers per liter (MFL) million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.
- Treatment Technique (TT) a treatment technique is a required process intended to reduce the level or a contaminant in drinking water.
- Variance amount of change, inconsistant

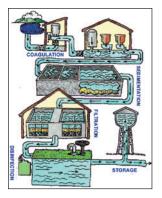
### ABBREVIATIONS

- ADEM Alabama Department of Environmental Management
- AL Action level
- EPA Environmental Protection Agency
- FDA Food and Drug Administration
- HAAs Total Haloacidic Acids
- LRAA Location running averages
- MCLG Maximum contaminant level goal
- MLC Maximum contaminant level
- NA Not available
- ND Not detected
- NTU Nephelometric Turbidity Unit
- PCi/L Picocuries per liter
- ppb Parts per billion
- ppm Parts per million
- RAA Running averages
- TTHMs Total Trihalomethanes



In 1974, the Safe Water Drinking Act (SWDA) was signed into law requiring all water systems that serve the public to meet national standards for water quality. These standards set limits for certain contaminants and require all public water systems to monitor for those contaminants. The Bessemer Water system routinely tests for these contaminants in your drinking water according to federal and state laws. The tables in this report show the monitoring results for the period beginning January 1, 2018 through December 31, 2018. If you have any questions concerning water quality, please contact S. Lowery in Water Quality at Bessemer Water Service at (205) 481-4333. Ext. 256.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno compromised persons such as a person with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA (Environmental Protection Agency)/CDC (Centers for Disease Control) guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water hotline (800-426-4791).


Trihalomethanes are substances formed when chlorine reacts with naturally occurring organic matter in the water to form compounds such as chloroform , bromoform and other trihalomethanes. Haloacetic acids are also formed by the organic matter combining with chlorine. These substances are called disinfection byproducts (DBPs).

We, at the Bessemer Water Service, work around the clock to provide quality water to every tap. We ask that all of our customers help us protect our water sources.

All drinking water, including bottled water, may reasonaly be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking water Hotline (800-426-4791).

The sources of drinking water both tap water and bottled water include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and it can pick up substances resulting from the presence of animals or from human activity.

### Water Treatment **Process**



- Intake Water is drawn into the treatment plant from the Black Warrior River
- Chemical Addition Chemicals are added to kill germs, improve taste, and odor
- Mixing, Coagulation & Flocculation Water and chemicals are rapidly mixed. Particles stick together to form larger particles (floc).
- Sedimentation- The floc then settles to the bottom and is removed from water.
- Filtration -Water flows through filters (layers of sand and gravel).
- Disinfection -Disinfecting chemical is to keep the water safe as it travels.
- Storage Water is placed in a closed tank
- Distribution- Water is transported to houses and other facilities.

Source: U.S. Environmental Protection Agency (EPA)

| DETECTED SUBSTANCES (MUST MEET MCL IN PPM)                                                                                                                 |                                                                             |                                      |                                                |                                                                                                |                                                                                                                                                                                                                        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Contaminant                                                                                                                                                | Highest Level<br>Detected                                                   | MCL Goal                             | MCL                                            | Range                                                                                          | Likely Source of Contamination                                                                                                                                                                                         |  |  |  |
| COPPER (*) (**)                                                                                                                                            | 0.027                                                                       | 1.3                                  | L = 1.3                                        | 0 - 0.027                                                                                      | CUSTOMER PLUMBING & SERVICES                                                                                                                                                                                           |  |  |  |
| LEAD (*) (**)                                                                                                                                              | < 0.005                                                                     | 0                                    | AL = 0.15                                      | 0 - 0.005                                                                                      | CUSTOMER PLUMBING & SERVICES                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                            | 1.04                                                                        | 4                                    | 4                                              | 0.17 - 1.04                                                                                    |                                                                                                                                                                                                                        |  |  |  |
| NITRATES                                                                                                                                                   | 0.59                                                                        | 10                                   | 10                                             | 0 - 0.59                                                                                       | RUN OFF FROM FERTILIZER                                                                                                                                                                                                |  |  |  |
| TURBIDITY (NTU)*                                                                                                                                           | 0.81                                                                        | 0                                    | 0.11                                           | 0.017 - 0.81                                                                                   | SOIL RUN OFF                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                            | **Copper and lead were tested in September 2018 and will be tested in 2019. |                                      |                                                |                                                                                                |                                                                                                                                                                                                                        |  |  |  |
| UNREGULATED SUBSTRUCTS                                                                                                                                     |                                                                             |                                      |                                                |                                                                                                |                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                            |                                                                             |                                      |                                                |                                                                                                |                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                            | System Wide                                                                 | 544                                  |                                                | _                                                                                              |                                                                                                                                                                                                                        |  |  |  |
| Total Trihalomethanes                                                                                                                                      | Annual Avg                                                                  | RAA                                  | MCL                                            | Range                                                                                          | Likely Source of Contatmination                                                                                                                                                                                        |  |  |  |
| TTHM (ppb) OR ug/l<br>TOTAL Haloacidic acids<br>(**) Bromodichlomethane<br>** Bromoform<br>(**) Bromomethane<br>(**) Chloroform<br>(**) Dibromchlormethane | MCL = 80 ppb<br>MCL = 60 ppb<br>16.1<br>< 1<br>< 1<br>72.6<br>3.0           | 69.6<br>48.3<br>NA<br>NA<br>NA<br>NA | 80 ppb<br>60 ppb<br>NA<br>NA<br>NA<br>NA<br>NA | 12.2 - 98 ug/l<br>6.05 - 64.8 ug/l<br>5.08 - 19.1<br>< 1.0<br>< 1.0<br>6.0 - 101<br>2.23 - 3.9 | BY PRODUCT OF DRINKING WATER CHLORINATION<br>BY PRODUCT OF DRINKING WATER CHLORINATION<br>BY PRODUCT OF DRINKING WATER<br>BY PRODUCT OF DRINKING WATER<br>BY PRODUCT OF DRINKING WATER<br>BY PRODUCT OF DRINKING WATER |  |  |  |
| (**) These five (5) components make up ${\bf TTHM's}$                                                                                                      |                                                                             |                                      |                                                |                                                                                                |                                                                                                                                                                                                                        |  |  |  |
| DISTRIBUTION SYSTEM MICROBIOLOGICAL SUBSTANCES (REGULATED)                                                                                                 |                                                                             |                                      |                                                |                                                                                                |                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                            | Highest Level                                                               |                                      |                                                |                                                                                                |                                                                                                                                                                                                                        |  |  |  |
| C ontam inant                                                                                                                                              | Detected                                                                    | MCL Goal                             | MCL                                            | Range                                                                                          | Likely Source of Contamination                                                                                                                                                                                         |  |  |  |
| TOTAL Coliform bacteria<br>*THE SAMPLE WAS NOT FECAL                                                                                                       | 10*                                                                         | 0%                                   | 5.00%                                          | 0 - 10*                                                                                        | NATURALLY PRESENT IN THE ENVIRONMENT<br>FROM ANIMAL OR HUMAN WASTE                                                                                                                                                     |  |  |  |

\*The highest presence of coliform bacteria in the distribution system was 10 due to training and new lab personnel learning how to take samples. All samples were retaken and validated as acceptable. Source Water Assessment: The complete source water assessment plan is available for review by the general public at the main office on 1st Avenue North in Bessemer. A list of all contaminant sources to which the water system's source water is susceptible and the susceptibility rating of the contaminant source is available for viewing on the wall in the lobby of the main utility office. A very abbreviated version is: The water source contamination potential is Low, the overall susceptibility ranking is Low, and the greatest potential of contaminantion appears to be from several public boat ramps. Our finished "water hardness" would be rated as hard with a range of 1.171 ppm of CaCO3 "Calcium Carbonate" with a yearly average of 100 ppm.

LEAD IN DRINKING WATER – Bessemer Utilities has optimized its treatment process so that the corrosion of internal plumbing is highly unlikely. However, if present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Bessemer Utilities is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

| UNREGULATED CONTAMINANTS TABLE |             |                         |             |  |  |  |
|--------------------------------|-------------|-------------------------|-------------|--|--|--|
| CONTAMINANT                    | RANGE       | CONTAMINANT             | RANGE       |  |  |  |
| 1,1 - Dichloropropene          | 0.000-0.000 | Dibromomethane          | 0.000-0.000 |  |  |  |
| 1,1,1,2 - Tetrachloroethane    | 0.000-0.000 | Dicamba                 | 0.000-0.000 |  |  |  |
| 1,1,2,2, - Tetrachloroethane   | 0.000-0.000 | Dichlorodifluoromethane | 0.000-0.000 |  |  |  |
| 1,1 - Dichloroethane           | 0.000-0.000 | Dieldrin                | 0.000-0.000 |  |  |  |
| 1,2,3 - Trichlorobenzene       | 0.000-0.000 | Fluoride                | 0.17 - 1.04 |  |  |  |
| 1,2,3 - Trichloropropane       | 0.000-0.000 | HAA5                    | 6.05 - 64.8 |  |  |  |
| 1,2,4 - Trimethylbenzene       | 0.000-0.000 | Hexachlorobutadiene     | 0.000-0.000 |  |  |  |
| 1,3 - Dichloropropane          | 0.000-0.000 | Isoprpylbenzene         | 0.000-0.000 |  |  |  |
| 1,3 - Dichloropropene          | 0.000-0.000 | Lead                    | 0.000-0.005 |  |  |  |
| 1,3,5 - Trimethylbenzene       | 0.000-0.000 | M - Dichlorobenzene     | 0.000-0.000 |  |  |  |
| 2,2 - Dichloropropane          | 0.000-0.000 | Methomyl                | 0.000-0.000 |  |  |  |
| 3 - Hydroxycarbofuran          | 0.000-0.000 | MTBE                    | 0.000-0.000 |  |  |  |
| Aldicarb                       | 0.000-0.000 | Metolachlor             | 0.000-0.000 |  |  |  |
| Aldicarb Sulfone               | 0.000-0.000 | Metribuzin              | 0.000-0.000 |  |  |  |
| Aldicarb Sulfoxide             | 0.000-0.000 | Nitrite                 | ND-ND       |  |  |  |
| Aldrin                         | 0.000-0.000 | Nitrate                 | ND-0.59     |  |  |  |
| Bromobenzene                   | 0.000-0.000 | N - Butylbenzene        | 0.000-0.000 |  |  |  |
| Bromodichlomethane             | 5.08 - 19.1 | Naphthalene             | 0.000-0.000 |  |  |  |
| Bromoform                      | < 1.0       | N - Propylbenzene       | 0.000-0.000 |  |  |  |
| Bromomethane                   | < 1.0       | O - Chlorotoluene       | 0.000-0.000 |  |  |  |
| Butachlor                      | 0.000-0.000 | P - Chlorotoluene       | 0.000-0.000 |  |  |  |
| Carbaryl                       | 0.000-0.000 | P - Isopropyltolucne    | 0.000-0.000 |  |  |  |
| Chloroethane                   | 0.000-0.000 | Propachlor              | 0.000-0.000 |  |  |  |
| Chloroform                     | 6.0 - 101   | Sec - Butylbenzene      | 0.000-0.000 |  |  |  |
| Chloromethane                  | 0.000-0.000 | Tert - Butylbenzene     | 0.000-0.000 |  |  |  |
| Copper                         | 0.000-0.027 | Trichlorfluoromethane   | 0.000-0.000 |  |  |  |
| Dibromochloromethane           | 2.23 - 3.9  | TTHM*                   | 12.2 - 98   |  |  |  |

| PRIMARY DRINKING WATER CONTAMINANTS |         |                    |                            |      |        |  |  |
|-------------------------------------|---------|--------------------|----------------------------|------|--------|--|--|
| CONTAMINANT                         | MCL     | AMOUNT<br>DETECTED | CONTAMINANT                | MCL  | AMOUNT |  |  |
| Bacteriological                     |         |                    | Endothall                  | 100  | ND     |  |  |
| Total Coliform Bacteria             | <5%     | 10                 | Endrin                     | 2    | ND     |  |  |
| Turbidity                           | тт      | 0.81               | Epichlorohydrin            | Π    | NA     |  |  |
| Radiological                        |         |                    | Glyphosate                 | 700  | ND     |  |  |
| Beta/photon emitters (mrem/yr)      | 4       | 0                  | Heptachlor                 | 400  | ND     |  |  |
| Alpha emitters (pci/l)              | 15      | 0-ND               | Heptachlor Expoxide        | 200  | ND     |  |  |
| Combined radium (pci/l)             | 5       | 0-ND               | Hexachlorobenzene          |      |        |  |  |
| Inorganic                           |         |                    | Hexachloropentadiene       | 1    | ND     |  |  |
| Antimony (ppb)                      | 6       | ND                 | Lindane                    | 200  | ND     |  |  |
| Arsenic (ppb)                       | 50      | ND                 | Methoxychlor               | 40   | ND     |  |  |
| Asbestos (MLF)                      | 7       | ND                 | Oxamyl [Vydate]            | 200  | ND     |  |  |
| Barium (ppm)                        | 2       | ND                 | PCBs                       | 500  | ND     |  |  |
| Beryllium (ppb)                     | 4       | ND                 | Pentachlorophenol          | 1    | ND     |  |  |
| Cadmium                             | 5       | ND                 | Picloram                   | 500  | ND     |  |  |
| Chromium                            | 100     | ND                 | Simazine                   | 4    | ND     |  |  |
| Copper                              | AL=1.3  | 0.027              | Toxaphene                  | 3    | ND     |  |  |
| Cyanide                             | 200     | ND                 | Benzene                    | 5    | ND     |  |  |
| Fluoride                            | 4       | 1.04               | Carbone Tetrachloride      | 5    | ND     |  |  |
| Lead                                | AL=0.15 | 0                  | Chlorobenzene              | 100  | ND     |  |  |
| Mercury                             | 2       | ND                 | Dibromochloropropane       | 200  | ND     |  |  |
| Nitrate                             | 10      | 0.59               | 0-Dichlorobenzene          | 600  | ND     |  |  |
| Nitrite                             | 1       | ND                 | p-Dichlorobenzene          | 75   | ND     |  |  |
| Selenium                            | 50      | ND                 | 1,2-Dichloroethane         | 5    | ND     |  |  |
| Thallium                            | 2       | ND                 | 1,1-Dichloroethylene       | 7    | ND     |  |  |
| Organic Chemicals                   |         |                    | Cis-1,2-Dichloroethylene   | 70   | ND     |  |  |
| 2,4-D                               | 70      | ND                 | trans-1,2-Dichloroethylene | 100  | ND     |  |  |
| 2,4,5-TP (Silvex)                   | 50      | ND                 | Dichloromethane            | 5    | ND     |  |  |
| Acrylamide                          | Π       | NA                 | 1,2-Dichloropropane        | 5    | ND     |  |  |
| Alachlor                            | 2       | ND                 | Ethylbenzene               | 700  | ND     |  |  |
| Atrazine                            | 3       | ND                 | Ethylene Diromide          | 50   | ND     |  |  |
| Benzo(a)pyrene[PHAs]                | 200     | ND                 | Styrene                    | 100  | ND     |  |  |
| Carbonfuran                         | 40      | ND                 | Tetrachloroethylene        | 5    | ND     |  |  |
| chlordane                           | 2       | ND                 | 1,2,4-Trichlorobenzene     | 70   | ND     |  |  |
| Dalapon                             | 200     | ND                 | 1,1,1-Trichloroethane      | 200  | ND     |  |  |
| Di-(2-ethylhexyl)adipate            | 400     | ND                 | 1,1,2-Trichloroethane      | 5    | ND     |  |  |
| Di(2-ethylhexyl)phthlates           | 6       | ND                 | Trichloroethylene          | 5    | ND     |  |  |
| Dinoseb                             | 7       | ND                 | TTHM                       | 80   | 98     |  |  |
| Diquat                              | 20      | ND                 | Toluene                    | 1    | ND     |  |  |
| Dioxin [2,3,7,8-TCDD]               | 30      | NA                 | Vinyl Chloride             | 2    | ND     |  |  |
| HAA5                                | 60      | 64.8               | Xylenes                    | 10   | ND     |  |  |
|                                     | 1       | Chlorine Dioxide   | 1                          | 0.80 |        |  |  |

DDIMARY DDINIZINIC WATER CONTAMINIANTS